Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Small ; 20(3): e2305727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699770

RESUMO

Promoting the proton-coupled electron transfer process in order to solve the sluggish carrier migration dynamics is an efficient way to accelerate the photocatalytic CO2 reduction (PCR) process. Herein, through the reduction of Sn4+ by amino and sulfhydryl groups, Sn0 particles are lodged in S-vacancies SnS2 nanosheets. The high conductance of Sn0 particles expedites the collection and transport of photogenerated electrons, activating the surrounding surface of unsaturated sulfur (Sx 2- ) and thus lowering the energy barrier for generation of *COOH. Meanwhile, S-vacancies boost H2 O adsorption while Sx 2- increases CO2 adsorption, as demonstrated by density functional theory (DFT), obtaining a selectivity of 97.88% CO and yield of 295.06 µmol g-1 h-1 without the addition of co-catalysts and sacrificial agents. This work provides a new approach to building a fast electron transfer interface between metal particles and semiconductors, which works in tandem with S-vacancies and Sx 2- to boost the efficiency of photocatalytic CO2 reduction to CO in pure water vapor environment.

2.
J Transl Med ; 21(1): 704, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814323

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common malignant tumor. Fusobacterium nucleatum (F. nucleatum) is overabundant in CRC and associated with metastasis, but the role of F. nucleatum in CRC cell migration and metastasis has not been fully elucidated. METHODS: Differential gene analysis, protein-protein interaction, robust rank aggregation analysis, functional enrichment analysis, and gene set variation analysis were used to figure out the potential vital genes and biological functions affected by F. nucleatum infection. The 16S rDNA sequencing and q-PCR were used to detect the abundance of F. nucleatum in tissues and stools. Then, we assessed the effect of F. nucleatum on CRC cell migration by wound healing and transwell assays, and confirmed the role of Matrix metalloproteinase 7 (MMP7) induced by F. nucleatum in cell migration. Furthermore, we dissected the mechanisms involved in F. nucleatum induced MMP7 expression. We also investigated the MMP7 expression in clinical samples and its correlation with prognosis in CRC patients. Finally, we screened out potential small molecular drugs that targeted MMP7 using the HERB database and molecular docking. RESULTS: F. nucleatum infection altered the gene expression profile and affected immune response, inflammation, biosynthesis, metabolism, adhesion and motility related biological functions in CRC. F. nucleatum was enriched in CRC and promoted the migration of CRC cell by upregulating MMP7 in vitro. MMP7 expression induced by F. nucleatum infection was mediated by the MAPK(JNK)-AP1 axis. MMP7 was highly expressed in CRC and correlated with CMS4 and poor clinical prognosis. Small molecular drugs such as δ-tocotrienol, 3,4-benzopyrene, tea polyphenols, and gallic catechin served as potential targeted therapeutic drugs for F. nucleatum induced MMP7 in CRC. CONCLUSIONS: Our study showed that F. nucleatum promoted metastasis-related characteristics of CRC cell by upregulating MMP7 via MAPK(JNK)-AP1 axis. F. nucleatum and MMP7 may serve as potential therapeutic targets for repressing CRC advance and metastasis.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Humanos , Fusobacterium nucleatum/genética , Metaloproteinase 7 da Matriz/genética , Neoplasias Colorretais/patologia , Simulação de Acoplamento Molecular , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/diagnóstico , Infecções por Fusobacterium/microbiologia
3.
J Transl Med ; 21(1): 713, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821882

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant tumors globally, with high morbidity and mortality. Endoplasmic reticulum is a major organelle responsible for protein synthesis, processing, and transport. Endoplasmic reticulum stress (ERS) refers to the abnormal accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, which are involved in tumorigenesis and cancer immunity. Nevertheless, the clinical significance of ERS remains largely unexplored in CRC. METHODS: In present study, we performed an unsupervised clustering to identify two types of ERS-related subtypes [ERS clusters, and ERS-related genes (ERSGs) clusters] in multiple large-scale CRC cohorts. Through the utilization of machine learning techniques, we have successfully developed an uncomplicated yet robust gene scoring system (ERSGs signature). Furthermore, a series of analyses, including GO, KEGG, Tumor Immune Dysfunction and Exclusion (TIDE), the Consensus Molecular Subtypes (CMS), were used to explore the underlying biological differences and clinical significance between these groups. And immunohistochemical and bioinformatics analyses were performed to explore ZNF703, a gene of ERSGs scoring system. RESULTS: We observed significant differences in prognosis and tumor immune status between the ERS clusters as well as ERSGs clusters. And the ERSGs scoring system was an independent risk factor for overall survival; and exhibited distinct tumor immune status in multicenter CRC cohorts. Besides, analyses of TNM stages, CMS groups demonstrated that patients in advanced stage and CMS4 had higher ERSGs scores. In addition, the ERSGs scores inversely correlated with positive ICB response predictors (such as, CD8A, CD274 (PD-L1), and TIS), and directly correlated with negative ICB response predictors (such as, TIDE, T cell Exclusion, COX-IS). Notably, immunohistochemical staining and bioinformatics analyses revealed that ZNF70 correlated with CD3 + and CD8 + T cells infiltration. CONCLUSION: Based on large-scale and multicenter transcriptomic data, our study comprehensively revealed the essential role of ERS in CRC; and constructed a novel ERSGs scoring system to predict the prognosis of patients and the efficacy of ICB treatment. Furthermore, we identified ZNF703 as a potentially promising target for ICB therapy in CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Fatores de Transcrição , Carcinogênese , Estresse do Retículo Endoplasmático/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Prognóstico , Proteínas de Transporte
4.
J Am Chem Soc ; 145(37): 20530-20538, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37677133

RESUMO

The structure and configuration of reaction centers, which dominantly govern the catalytic behaviors, often undergo dynamic transformations under reaction conditions, yet little is known about how to exploit these features to favor the catalytic functions. Here, we demonstrate a facile light activation strategy over a TiO2-supported Cu catalyst to regulate the dynamic restructuring of Cu active sites during low-temperature methanol steam reforming. Under illumination, the thermally deactivated Cu/TiO2 undergoes structural restoration from inoperative Cu2O to the originally active metallic Cu caused by photoexcited charge carriers from TiO2, thereby leading to substantially enhanced activity and stability. Given the low-intensity solar irradiation, the optimized Cu/TiO2 displays a H2 production rate of 1724.1 µmol g-1 min-1, outperforming most of the conventional photocatalytic and thermocatalytic processes. Taking advantages of the strong light-matter-reactant interaction, we achieve in situ manipulation of the Cu active sites, suggesting the feasibility for real-time functionalization of catalysts.

5.
ChemSusChem ; 16(24): e202300860, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37602501

RESUMO

Modifying the polymeric carbon nitride (CN) with organic molecules is a promising strategy to enhance the photocatalytic activity. However, most previously reported works show that interchain embedding and edge grafting of the organic molecule can hardly be achieved simultaneously. Herein, we successfully synthesized organic molecule bifunctionalized CN (MBCN) through copolymerization of melon and sulfanilamide at a purposely elevated temperature of 550 °C. In MBCN, the edge grafted and interchain embedded benzene rings act as the electron-donating group and charge-transfer channel, respectively, rendering efficient photocatalytic H2 O2 production. The optimal MBCN exhibits a significantly improved non-sacrificial photocatalytic H2 O2 generation rate (54.0 µmol g-1 h-1 ) from pure water, which is 10.4 times that of pristine CN. Experimental and density functional theory (DFT) calculation results reveal that the enhanced H2 O2 production activity of MBCN is mainly attributed to the improved photogenerated charge separation/transfer and decreased formation energy barrier (▵G) from O2- to the intermediate 1,4-endoperoxide (⋅OOH). This work suggests that simultaneous formation of electron donating group and charge transfer channel via organic molecule bifunctionalization is a feasible strategy for boosting the photocatalytic activity of CN.

6.
Front Cardiovasc Med ; 10: 1208227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593146

RESUMO

Background: Cardiovascular tissue engineering (CTE) is a promising technique to treat incurable cardiovascular diseases, such as myocardial infarction and ischemic cardiomyopathy. Plenty of studies related to CTE have been published in the last 30 years. However, an analysis of the research status, trends, and potential directions in this field is still lacking. The present study applies a bibliometric analysis to reveal CTE research trends and potential directions. Methods: On 5 August 2022, research articles and review papers on CTE were searched from the Web of Science Core Collection with inclusion and exclusion criteria. Publication trends, research directions, and visual maps in this field were obtained using Excel (Microsoft 2009), VOSviewer, and Citespace software. Results: A total of 2,273 documents from 1992 to 2022 were included in the final analysis. Publications on CTE showed an upward trend from 1992 [number of publications (Np):1] to 2021 (Np:165). The United States (Np: 916, number of citations: 152,377, H-index: 124) contributed the most publications and citations in this field. Research on CTE has a wide distribution of disciplines, led by engineering (Np: 788, number of citations: 40,563, H-index: 105). "Functional maturation" [red cluster, average published year (APY): 2018.63, 30 times], "cell-derived cardiomyocytes" (red cluster, APY: 2018.43, 46 times), "composite scaffolds" (green cluster, APY: 2018.54, 41 times), and "maturation" (red cluster, APY: 2018.17, 84 times) are the main emerging keywords in this area. Conclusion: Research on CTE is a hot research topic. The United States is a dominant player in CTE research. Interdisciplinary collaboration has played a critical role in the progress of CTE. Studies on functional maturation and the development of novel biologically relevant materials and related applications will be the potential research directions in this field.

7.
Nat Commun ; 14(1): 3171, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264007

RESUMO

Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g-1 h-1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g-1 h-1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis.

8.
Nat Commun ; 14(1): 2534, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137896

RESUMO

The photoreduction of carbon dioxide (CO2) into renewable synthetic fuels is an attractive approach for generating alternative energy feedstocks that may compete with and eventually displace fossil fuels. However, it is challenging to accurately trace the products of CO2 photoreduction on account of the poor conversion efficiency of these reactions and the imperceptible introduced carbon contamination. Isotope-tracing experiments have been used to solve this problem, but they frequently yield false-positive results because of improper experimental execution and, in some cases, insufficient rigor. Thus, it is imperative that accurate and effective strategies for evaluating various potential products of CO2 photoreduction are developed for the field. Herein, we experimentally demonstrate that the contemporary approach toward isotope-tracing experiments in CO2 photoreduction is not necessarily rigorous. Several examples of where pitfalls and misunderstandings arise, consequently making isotope product traceability difficult, are demonstrated. Further, we develop and describe standard guidelines for isotope-tracing experiments in CO2 photoreduction reactions and then verify the procedure using some reported photoreduction systems.

9.
Angew Chem Int Ed Engl ; 62(26): e202304585, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37115736

RESUMO

Artificial photosynthesis is a promising strategy for converting carbon dioxide (CO2 ) and water (H2 O) into fuels and value-added chemical products. However, photocatalysts usually suffered from low activity and product selectivity due to the sluggish dynamic transfer of photoexcited charge carriers. Herein, we describe anchoring of Ag single atoms on hollow porous polygonal C3 N4 nanotubes (PCN) to form the photocatalyst Ag1 @PCN with Ag-N3 coordination for CO2 photoreduction using H2 O as the reductant. The as-synthesized Ag1 @PCN exhibits a high CO production rate of 0.32 µmol h-1 (mass of catalyst: 2 mg), a high selectivity (>94 %), and an excellent stability in the long term. Experiments and density functional theory (DFT) reveal that the strong metal-support interactions (Ag-N3 ) favor *CO2 adsorption, *COOH generation and desorption, and accelerate dynamic transfer of photoexcited charge carriers between C3 N4 and Ag single atoms, thereby accounting for the enhanced CO2 photoreduction activity with a high CO selectivity. This work provides a deep insight into the important role of strong metal-support interactions in enhancing the photoactivity and CO selectivity of CO2 photoreduction.


Assuntos
Nanotubos , Prata , Dióxido de Carbono , Adsorção
10.
Angew Chem Int Ed Engl ; 62(23): e202302253, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012479

RESUMO

Solar-driven CO2 hydrogenation into multi-carbon products is a highly desirable, but challenging reaction. The bottleneck of this reaction lies in the C-C coupling of C1 intermediates. Herein, we construct the C-C coupling centre for C1 intermediates via the in situ formation of Co0 -Coδ+ interface double sites on MgAl2 O4 (Co-CoOx /MAO). Our experimental and theoretical prediction results confirmed the effective adsorption and activation of CO2 by the Co0 site to produce C1 intermediates, while the introduction of the electron-deficient state of Coδ+ can effectively reduce the energy barrier of the key CHCH* intermediates. Consequently, Co-CoOx /MAO exhibited a high C2-4 hydrocarbons production rate of 1303 µmol g-1 h-1 ; the total organic carbon selectivity of C2-4 hydrocarbons is 62.5 % under light irradiation with a high ratio (≈11) of olefin to paraffin. This study provides a new approach toward the design of photocatalysts used for CO2 conversion into C2+ products.

11.
ACS Appl Mater Interfaces ; 15(12): 15387-15395, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926809

RESUMO

ZnS materials exhibit very negative potential of the conduction band, which is promising in photocatalytic reduction reactions. Unfortunately, previously reported ZnS materials for photocatalysis are mainly in the cubic phase, which produce high activity for H2 evolutions and low activity toward CO2 reductions. Herein, a hexagonal phase ZnS photocatalyst is fabricated for highly efficient CO2 reduction reactions. The hexagonal ZnS nanoplates with the pure phase and well crystallization are synthesized via three-step solvothermal methods. In photocatalytic CO2 reduction reactions under an aqueous solution environment, the hexagonal ZnS produces a CO selectivity of 21%, which is distinctly higher than that of 0.2% for commonly used cubic ZnS. The energy band study suggests that hexagonal ZnS possesses a slightly more negative conduction band and wider bandgap than cubic ZnS. Theoretical calculations reveal that the hexagonal ZnS possesses increased electron density around Zn atoms as that of cubic ZnS. Furthermore, hexagonal ZnS exhibits relatively reduced absorption energy of CO2 reduction intermediates and increased absorption energy of H* as cubic ZnS, which result in better selectivity toward CO2 reduction reactions. This study offers deep insights into the synthesis and electronic structure of hexagonal ZnS for CO2 reduction reactions, which inspire the design of highly active photocatalysts for artificial photosynthesis.

12.
Angew Chem Int Ed Engl ; 62(19): e202302050, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36914574

RESUMO

All-solid-state Z-Scheme photocatalysts have attracted significant attention due to their great potential for solar fuel production. However, delicately coupling two individual semiconductors with a charge shuttle by a material strategy remains a challenge. Herein, we demonstrate a new protocol of natural Z-Scheme heterostructures by strategically engineering the component and interfacial structure of red mud bauxite waste. Advanced characterizations elucidated that the hydrogen-induced formation of metallic Fe enabled the effective Z-Scheme electron transfer from γ-Fe2 O3 to TiO2 , leading to the significantly boosted spatial separation of photo-generated carriers for overall water splitting. To the best of our knowledge, it is the first Z-Scheme heterojunction based on natural minerals for solar fuel production. Thus our work provides a new avenue toward the utilization of natural minerals for advanced catalysis applications.

13.
ACS Nano ; 17(3): 1725-1738, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36734978

RESUMO

Converting carbon dioxide (CO2) into value-added fuels or chemicals through photothermal catalytic CO2 hydrogenation is a promising approach to alleviate the energy shortage and global warming. Understanding the nanostructured material strategies in the photothermal catalytic CO2 hydrogenation process is vital for designing photothermal devices and catalysts and maximizing the photothermal CO2 hydrogenation performance. In this Perspective, we first describe several essential nanomaterial design concepts to enhance sunlight absorption and utilization in photothermal CO2 hydrogenation. Subsequently, we review the latest progress in photothermal CO2 hydrogenation into C1 (e.g., CO, CH4, and CH3OH) and multicarbon hydrocarbon (C2+) products. Finally, the relevant challenges and opportunities in this exciting research realm are discussed. This perspective provides a comprehensive understanding for the light-heat synergy over nanomaterials and instruction for rational photothermal catalyst design for CO2 utilization.

14.
Medicine (Baltimore) ; 102(8): e33010, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827059

RESUMO

BACKGROUND: Exercise training significantly improves cardiorespiratory fitness (CRF) in heart failure with reduced ejection fraction (HFrEF) patients, but high-intensity interval training (HIIT) is not superior to moderate-intensity interval training (MIIT). Whether HIIT is more beneficial than MIIT in patients with heart failure with preserved ejection fraction (HFpEF) remains unclear. METHODS: On August 29, 2021, we conducted a comprehensive computerized literature search of the Medline, EMBASE, Web of Science, and Cochrane databases using the following keywords: "HF or diastolic HF or HFpEF or HF with normal ejection fraction and exercise training or aerobic exercise or isometric exercises or physical activity or cardiac rehabilitation." Only randomized controlled trials (RCTs) reporting comparisons between HIIT and MIIT in HFpEF were included in the final analysis to maintain consistency and obtain robust pooled estimates. Methodological quality was assessed based on the ratings of individual biases. To generate an overall test statistic, the data were analyzed using the random-effects model for a generic inverse variance. Outcome measures were reported as an odds ratio, and confidence intervals (CIs) were set at 95%. The study followed PRISMA guidelines. RESULTS: This meta-analysis included only RCTs comparing the efficacy of HIIT and MIIT in HFpEF patients. This study included 150 patients from 3 RCTs. In the current pooled data analysis, HIIT significantly improves diastolic function measured by E/A ratio (WMD, 0.13; 95% CI, 0.03-0.23, P = .009). However, no significant change was observed in the diastolic function measured by E/e' ratio (WMD, 0.39; 95% CI, -2.40 to 3.18, P = .78), and CRF evaluated by both VO2 (mL/kg per min; WMD, -0.86; 95%CI, -5.27 to 3.55, P = .70) and VE/CO2 slope (WMD, 0.15; 95% CI, -10.24 to 10.53, P = .98), and systolic function (EF-WMD, -2.39; 95% CI, -12.16% to 7.38%, P = .63) between HIIT and MIIT in patients with HFpEF. CONCLUSION: In HFpEF patients, HIIT may be superior to MIIT in improving diastolic function, measured by E/A, but not CRF and left ventricular systolic function.


Assuntos
Insuficiência Cardíaca , Treinamento Intervalado de Alta Intensidade , Humanos , Terapia por Exercício , Qualidade de Vida , Tolerância ao Exercício , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico
15.
Nat Commun ; 14(1): 751, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765049

RESUMO

Exploring efficient electrocatalysts with fundamental understanding of the reaction mechanism is imperative in CO2 electroreduction. However, the impact of sluggish water dissociation as proton source and the surface species in reaction are still unclear. Herein, we report a strategy of promoting protonation in CO2 electroreduction by implementing oxygen vacancy engineering on Bi2O2CO3 over which high Faradaic efficiency of formate (above 90%) and large partial current density (162 mA cm-2) are achieved. Systematic study reveals that the production rate of formate is mainly hampered by water dissociation, while the introduction of oxygen vacancy accelerates water dissociation kinetics by strengthening hydroxyl adsorption and reduces the energetic span of CO2 electroreduction. Moreover, CO3* involved in formate formation as the key surface species is clearly identified by electron spin resonance measurements and designed in situ Raman spectroscopy study combined with isotopic labelling. Coupled with photovoltaic device, the solar to formate energy conversion efficiency reaches as high as 13.3%.

16.
Front Microbiol ; 14: 1023036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846790

RESUMO

Objective: The widespread use of antibiotics has inevitably led to the emergence of multidrug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), making treatment of this infection a serious challenge. This study aimed to explore new treatment strategies for MRSA infection. Methods: The structure of Fe3O4 NPs with limited antibacterial activity was optimized, and the Fe2+ ↔ Fe3+ electronic coupling was eliminated by replacing 1/2 Fe2+ with Cu2+. A new type of copper-containing ferrite nanoparticles (hereinafter referred to as Cu@Fe NPs) that fully retained oxidation-reduction activity was synthesized. First, the ultrastructure of Cu@Fe NPs was examined. Then, antibacterial activity was determined by testing the minimum inhibitory concentration (MIC) and safety for use as an antibiotic agent. Next, the mechanisms underlying the antibacterial effects of Cu@Fe NPs were investigated. Finally, mice models of systemic and localized MRSA infections was established for in vivo validation. Results: It was found that Cu@Fe NPs exhibited excellent antibacterial activity against MRSA with MIC of 1 µg/mL. It effectively inhibited the development of MRSA resistance and disrupted the bacterial biofilms. More importantly, the cell membranes of MRSA exposed to Cu@Fe NPs underwent significant rupture and leakage of the cell contents. Cu@Fe NPs also significantly reduced the iron ions required for bacterial growth and contributed to excessive intracellular accumulation of exogenous reactive oxygen species (ROS). Therefore, these findings may important for its antibacterial effect. Furthermore, Cu@Fe NPs treatment led to a significant reduction in colony forming units within intra-abdominal organs, such as the liver, spleen, kidney, and lung, in mice with systemic MRSA infection, but not for damaged skin in those with localized MRSA infection. Conclusion: The synthesized nanoparticles has an excellent drug safety profile, confers high resistant to MRSA, and can effectively inhibit the progression of drug resistance. It also has the potential to exert anti-MRSA infection effects systemically in vivo. In addition, our study revealed a unique multifaceted antibacterial mode of Cu@Fe NPs: (1) an increase in cell membrane permeability, (2) depletion of Fe ions in cells, (3) generation of ROS in cells. Overall, Cu@Fe NPs may be potential therapeutic agents for MRSA infections.

18.
Small ; 19(17): e2206673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703518

RESUMO

Atomic level decoration route is designated as one of the attractive methods to regulate both the charge density and band structure of photocatalysts. Moreover, to enable more efficient separation and transport of photocarriers, the construction of novel active sites can enhance both the reactivity and electrical conductivity of the crystal. Herein, an Li-N ligand is constructed via co-doping lithium and nitrogen atoms into ZnIn2 S4 lattice, which achieves a promoted photocatalytic H2 evolution at 9737 µmol g-1 h-1 . The existence of Li-N ligand pairs and the behaviors of photocarriers on L40 N5 ZIS are determined systematically, which also provides a unique insight into the mechanism of the improved photocarrier migration rate. With the introduction of Li-N dual sites, the vacancy form of ZnIn2 S4 has changed and the photocatalytic stability is significantly improved. Interestingly, the change of charge density around Li-N ligand in ZnIn2 S4 is determined by theoretical simulations, as well as the regulated energy barrier of photocatalytic water splitting caused by Li-N dual sites, which act as both adsorption site for H2 O and stronger reactive sites. This work helps to extend the understanding of ZnIn2 S4 and offers a fresh perspective for the creation of a Li-N co-doped photocatalyst.

19.
Angew Chem Int Ed Engl ; 62(4): e202215057, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36446740

RESUMO

Direct photocatalytic oxidation of methane to liquid oxygenated products is a sustainable strategy for methane valorization at room temperature. However, in this reaction, noble metals are generally needed to function as cocatalysts for obtaining adequate activity and selectivity. Here, we report atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite (Ni-NC/TiO2 ) as a highly active and selective catalyst for photooxidation of CH4 to C1 oxygenates with O2 as the only oxidant. Ni-NC/TiO2 exhibits a yield of C1 oxygenates of 198 µmol for 4 h with a selectivity of 93 %, exceeding that of most reported high-performance photocatalysts. Experimental and theoretical investigations suggest that the single-atom Ni-NC sites not only enhance the transfer of photogenerated electrons from TiO2 to isolated Ni atoms but also dominantly facilitate the activation of O2 to form the key intermediate ⋅OOH radicals, which synergistically lead to a substantial enhancement in both activity and selectivity.

20.
Front Cell Infect Microbiol ; 12: 1020583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523635

RESUMO

Colorectal cancer(CRC) is the third most frequent malignant tumor. The gut microbiome acts as a vital component of CRC etiology. Fusobacterium nucleatum(Fn) is a key member of colorectal cancer-associated bacteria. But we lack a systematic and in-depth understanding on its role in CRC evolution. In this article, We reviewed the abundance changes and distribution of Fn in CRC occurrence and development, potential effect of Fn in the initiation of CRC, the source of intratumoral Fn and the cause of its tropism to CRC. In addition, We described the mechanism by which Fn promotes the malignant biological behavior of CRC, affects CRC response to therapy, and shapes the tumor immune microenvironment in great detail. Based on the relationship between Fn and CRC, we proposed strategies for CRC prevention and treatment, and discussed the feasibility and limitations of specific cases, to gain insights into further basic and clinical research in the future.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/etiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...